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To Quantum Dots and Qubits

with electrons on helium
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• the exact quantity

of helium is added

to fill the two pools

and the ring.

• electrons are

created by a corona

discharge.

•Only electrons

above pools and

ring are mobile.
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• The electrostatic trap is created by the SET itself.

Gate

R pool Gate



• Sample more or less similar to RHL one.

Counting Individual Electrons on liquid Helium .
G.Papageorgiou & al.

Applied physics letters 86, 153106 (2005)

Royal holloway



Sample specificity:

• Ring diameter 3 μm, pyramidal SET island
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Detection

•The voltage across the SET is a
periodic function of the island
charge.

•When an electron goes in or out of
the trap the SET island charge
change by dq.

SET island
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• We fit with a spline function a quiet part of the oscillations.

• The phase of the oscillations changes then by df.



Charging the ring

Left and right pools

guard
guard

Drawing of the potential profile

ring
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last jumps are around ~0.4 e, value which is reproduced by

simulations.
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Density estimate

• For a small number of electrons, density
can be considered as uniform.
 A.A.Koulakov, B.I.Shklovskii cond-
mat/9705030

• The electric field is supposed to be
constant on SET island.

• The electric charge on the SET island is
then given by:

nSeff (1-cos( max))
Q

e
= 2 0

With max=arctan ( N
n

1

h
)

N=n R2  number of electron

n electronic density

max

SET island

h

Electron sheet
R

Seff
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Density estimate

Seff =0.34 +/- 0.07 μm2

Electronic density=(1.8 +/- 0.4) 1014 m-2

Sreal=0.35 μm2



• The interaction between electrons is not

screened by surrounding electrodes.

• From thermal fluctuations:

n=1014 transition temperature Tc=2.5 K

• rs~2000  rs
cri~30

Coulombic interaction is dominant

• Electrons should form a Wigner crystal.



Wigner molecules

Competition

between the symmetry of the trap

(parabolic trap)

 Ø shell ordering

and the symmetry of the Wigner

crystal

Ø triangular lattice structure

N=7

N=19



macroscopic observation

camera

No observations with electrons on helium.



Addition Spectra

Current pA
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Gate voltage, V
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• charging energy:

  energy required to add

  one electron

• μ(N) =μ(N)-μ(N-1)

              ~ e Vg

μrightμleft

gate
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Liquid phase

• Average interaction between electrons

Ø Constant interaction model

Ø 1 particles model in a parabolic trap

• Confinement induce energy shell with magic numbers when a

shell is completely filled: 2,6,12 (degeneracy due to spin)

2eC+ 2eC++



Hund’s rule



Vladimir Bedanov and François Peeters

PRB 49, 2667
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“The numbers of

electrons on each

ring are not

universal and depend

on the type and

strength of

confinement

potential.”

B.Partoens and F.Peeters

J.Phys:condens matter,9

5383 (1997)

For a parabolic trap

No magic numbers when electrons form Wigner molecules.

Simulations needed to explain addition energy plot
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Monte Carlo simulations

• The model

potential profile found with simulation 

Ø simulation of the pyramidal island.

• Ground state of the configuration with N electrons is

found with Monte-Carlo Simulations.

• Ground state energy vary linearly with reservoir right

potential.
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Monte Carlo simulations

• The model

potential profile found with simulation 

Ø simulation of the pyramidal island.

• Ground state of the configuration with N electrons is

found with Monte-Carlo Simulations.

• Ground state energy vary linearly with reservoir right

potential.

• Criteria when the electron leaves the trap?
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Potential profile = one particule energy
NN

One electron leaves the trap when
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experiment

simulation

Vset=0.5 Vgate=0.5
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Clear magic

numbers!

Cannot be explain

with M-C simulation

Positive impurity

increase locally the

density

Structural transition in a finite classical two dimensional

system

G. A. Farias and F. M. Peeters

solid state communication, 100, 711  (1996)
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Probability of escape

• If the barrier is
thin enough,
the electron can
tunnel. b
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Potential profile

Barrier

height

Quantum state evidence?



Existing to the first excited state

SETI

|0>

|1>
Oscillating E

Time

Tunneling time

=5.10-11 s

Potential felt by the electron

+e -e

mix=75 μs



measurement principles

1.  We choose a SET current

value

from 0 nAmp (no heating)

to 50 nAmps.

2.  We applied a voltage pulse

to the right reservoir: the

barrier height is reduce.

3.  We check whether the

electron is still in the trap or

not.

4. 2000-3000 tries for one

escape curve.

position

Potentials profiles

Barrier

?
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 p= 1-exp(- 0exp(-Eb/kbT))

0 = 0 /2

0/2  ~ 30 GHz trap frequency

 pulse length

Eb barrier high

Eb and 0 estimated from

simulations

Temperature estimate
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The pulse is applied during heating

Curve width with heating current
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Quantum tunneling

Thermal activation

Crossover Temp ~ 250 mK
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 0 ~ 30 GHz

(before the pulse)

Cross-over temperature

                 ~ 230 mK

 the frequency of the barrier

0

02BhTk :
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extraction curve

Vsetapp=0.2598

Temp=0.235 K

Vset=0.3

Only one

parameter is

adjusted

Ø  Vset.

Contact potential between niobium and aluminium

the potential on the SET is not really known

Tcell=30 mK
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No change when

we heat the

electron!

Need to probe

the coupling

between the

electron and its

environment



1. Heating for 300 ms

with 50 nAmps.

2. Wait between 2 and
100 μs.

3. Applied the pulse on

reservoir right.

4. Fit the curve.

According to

position and width of

this curve get a

number proportional

to the temperature

Coupling with environment

position

Potential profile

Barrier

SET

100 μs
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Coupling with the environment

 t=0 high temperaure

Even for t=2 μs, temp. is low.



Heating pulse decay

50 nAmps

~ 0.4 μs

Heating current

time
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What can we say?

• Either the coupling with the environment is

huge



Where does it come from?

Coupling with phonons

• they induce modulations of the density.

So they induce modulation of the image

charge.

• This coupling depends highly with the

electric field on the electron.

• In our case  ~ 10 μs

We maybe tried the smallest electric field as

we could to keep the electron in the trap!



What can we say?

• Either the coupling with the environment is
huge

• Or the picture of the heating procedure is too
naïve

SETI

|0>

|1>

Dynamical force?



Two wave-guids:

~ 40 GHz  Ø parrallel levels

~ 120 GHz Ø perpendicular levels
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circular

ellipsoïdal

Evolution with deformation

Increase of the deformation





L pool R pool
ring

Guard electrode

Bias and IV characteristic

PreAmpIds A

B

A-B

the SET is current bias

Uds



IV Characteristic

For C-B

oscillations
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Measurement

• L-in technique: 125 Hz, 6-30 μV applied to the guard

L pool R pool
ring

Guard electrode

PreAmp

125

L-in

From L-in

6 μV



C-B oscillations

Raw oscillations From L-in
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Some properties of this

kind of quantum dots

• Classical point of view: competition between
thermal fluctuations and coulombian interaction

• for n=1014 transition temperature Tc=2.5 K

• Working temperature: from 50 mK to 1K



Gas parameter

• Measure the competition between
quantum fluctuations and
Coulombic interaction

• For  n ~ 1014 m-2  a ~n-1/2 ~ 0.1 μm

• typical coulomb energy

• Typical kinetic energy (Fermi
energy)

• rs~2000  rscri~30
Coulombic interaction is
dominant

• Semiconductors qdots rs~2

2014ceEa :

a

22KEmah:
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